Measuring Dynamic Problem Solving: The MicroDYN Approach

Samuel Greiff & Joachim Funke
Definition of DPS

- DPS is understood as a primarily cross-curricular competency
- According to the PISA definition PS-competency involves “far more than the basic reproduction of accumulated knowledge”
- Thus, DPS-competency
 - is to be measured computer-based to capture interactive & dynamic aspects
 - does not depend heavily on prior knowledge & semantics (divergent validity)
 - is connected to & yet distinguishable from (fluid) intelligence
- Interactive & dynamic interaction between participant and task is mandatory
Definition of DPS

- Suggested extension for categories of problem types

```
<table>
<thead>
<tr>
<th>Problem type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
</tr>
<tr>
<td>- Closed</td>
</tr>
<tr>
<td>- Open-ended</td>
</tr>
<tr>
<td>Dynamic</td>
</tr>
<tr>
<td>- Tasks constructed ad hoc</td>
</tr>
<tr>
<td>- Tasks embedded in generic framework</td>
</tr>
</tbody>
</table>
  - Linear equations: MicroDYN |
  - Finite automata: MicroFIN |
```
Definition of DPS

“DPS is the ability to identify the unknown structure of artefacts in dynamic, technology-rich environments to reach certain goals.”

- **Ability**
 DPS can be learned & altered (e.g. by training)

- **Identify structure & reach goals**
 Abstract requirements of (a) model building (knowledge acquisition) & (b) forecasting (knowledge application)

- **Unknown structure**
 DPS deals with new situations where a routine solution is not at hand

- **Artefact**
 Contrasts DPS to natural objects, (social) events, and so on

- Not explicitly mentioned but inherit in DPS are aspects of metacognition, i.e. monitoring & reflecting
Assessment of DPS

• Based on a formal system structure & embedded in an arbitrary semantic context, dynamic systems model a wide range of everyday activities
• MicroDYN: Systems with continuous variables
• MicroFIN: Systems with discrete variables
• MicroDYN & MicroFIN use *minimal complex systems* to ensure
 – varying difficulties
 – different levels of prior knowledge & varying semantics
 – scalability
• Dynamic systems have been used considerably in research and are well introduced in the literature
Everyday examples that can be modelled ...

by **MicroDYN**-systems:

• Managing monthly expenses
• Driving a car
• Conducting experiments
• Producing groceries
• Controlling machines
• Thermostat
• Dosaging medicine
• Cooking & frying
• Managing medical emergencies
• Exercising fitness
• and so on...

by **MicroFIN**-systems:

• Mobile phones
• Microwaves
• MP3-Player
• Home theatres
• Ticket vending machines
• Radios
• Remote controls
• Car cockpit controls
• Coffee machines
• Washing machines
• Digital Cameras
• Safe
• and so on...
The MicroDYN approach

- Main effect
- Eigendynamic
- Multiple effect
- Multiple dependence
- Side effect
- Exogenous variables
- Endogenous variables

The MicroDYN & MicroFIN Approach
University Heidelberg
The MicroDYN approach

- (A) Information Retrieval
 - „Explore the system.“
 - 180 seconds

- (B) Model Building
 - „Draw the connections between variables as you suppose.“
 - Simultaneously to (A)

- (C) Forecasting
 - „Reach given target values on the endogenous variables by entering correct values in the system.“
 - 60 seconds
The MicroDYN approach

- Dörner’s Theory of Operational Intelligence (1986)
- Theoretical foundation is obtained
- 3 facets of DPS are measured

<table>
<thead>
<tr>
<th>Problem characteristics</th>
<th>Requirements by the problem solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intransparency</td>
<td>Information retrieval</td>
</tr>
<tr>
<td>Connectedness</td>
<td>Model building</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Forecasting</td>
</tr>
<tr>
<td>Complexity</td>
<td>Reduction of information</td>
</tr>
<tr>
<td>Polytecly</td>
<td>Priority setting and evaluation</td>
</tr>
</tbody>
</table>
MicroDYN: Advantages

• Constructs derived from Cognitive Psychology
 – 3 facets theoretically derived & empirically tested
 – Intradimensional competence levels (experimentally derived)
 – Experimental background
• Requires dynamic interaction & evaluates overt behavior
• Difficulty can be freely varied
• Overarching frame of reference (item commensurability)
• Successful participation with HEIFI in PISA 1999 (national German extension)
• Ease of change (in Itembuilder & Execution Environment)
Conceptual issues

• **Necessities on a macro level:**
 – Common framework & overarching frame of reference
 – Theoretically bound & empirically tested items
 – Systematic approach in formulating items

• **Necessities on a micro level:**
 – Influence of item characteristics on difficulty
 – Competence levels
 – Systematic approach in varying item characteristics & tailoring items to certain levels of competency (scalability)
Tentative results
Tentative results

![Diagram of correlations between model building, forecasting, information retrieval, HEIFI knowledge, HEIFI control, school achievement, and their respective R^2 values.

- Model building to School achievement: R^2 = .41** (p = .08)
- Forecasting to School achievement: R^2 = .39** (p = .10)
- Information retrieval to HEIFI knowledge: R^2 = .28** (p = .09)
- Information retrieval to HEIFI control: R^2 = .71** (p = .11)
- Model building to Forecasting: .73** (p = .07)
- Model building to Information retrieval: .75** (p = .05)
- Forecasting to Information retrieval: .69** (p = .07)
- Forecasting to HEIFI knowledge: .40* (p = .22)
- Forecasting to HEIFI control: .48** (p = .18)
- Information retrieval to HEIFI knowledge: .36* (p = .18)
- Information retrieval to HEIFI control: .36** (p = .15)
<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>χ^2/df</th>
<th>CFI</th>
<th>TLI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroDYN 3-dimensional</td>
<td>40.47</td>
<td>28</td>
<td>.06</td>
<td>1.45</td>
<td>.98</td>
<td>.98</td>
<td>.06</td>
</tr>
<tr>
<td>MicroDYN, HEIFI &</td>
<td>76.26</td>
<td>53</td>
<td>.02</td>
<td>1.44</td>
<td>.97</td>
<td>.96</td>
<td>.07</td>
</tr>
<tr>
<td>school achievement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measuring Dynamic Problem Solving
The MicroDYN and MicroFIN Approach
University Heidelberg

Climatic change

Space Shuttle

Ecological Scenarios
Economic Scenarios
Medical Scenarios

Samuel Greiff
February 8th – 12th 2010
<table>
<thead>
<tr>
<th>Complexity Level</th>
<th>2x2-systems</th>
<th>3x3-systems</th>
<th>4x4-systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low complexity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium complexity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High complexity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do we want to measure?

- Knowledge, intelligence & DPS are distinct constructs
- The assessment design needs to target the separation of these constructs
 - “You get out, what you put in”
 - to capture cross-curricular DPS a valid design is needed

⇒ DPS requires to explore a system systematically, create a mental model & control the systems independent of semantic embedment & prior knowledge
References

Thank you for your attention
Appendix: Screenshots MicroDYN

• Screenshots of all MicroDYN-Items in German with varying semantic embedment & realism
Airplane

Gepäck

Benzin

Flugdauer

Abgasmenge

Alles löschen

zurück

Ausführen!

Beende Steuerphase

Modell

Gepäck

Flugdauer

Benzin

Abgasmenge
Fitness Drink

Mesana

0 2 4

Belus

0 2 4

Geschmack

0 2 4

stärkende Wirkung

0 2 4

Alles löschen

zurück

Ausführen!

Beende Steuerphase

Modell

Mesana → Geschmack

Belus → stärkende Wirkung
Issues in item development

Climate
First Aid

- Sarol
- Rexol
- Menol

Herzschlag
- 0
- 2
- 4

Atmung
- 0
- 2
- 4

Zahl weißer Blutkörperchen
- 0
- 2
- 4

Alles löschen
zurück
Ausführen!

Beende Steuerphase
Deodorant

Miral

Carumin

Norilan

sportlich

süßlich

frisch

18

14

14

Alles löschen zurück Ausführen!

Beende Steuerphase

Modell

Miral 运动
Carumin 甜蜜
Norilan 清新
Measuring Dynamic Problem Solving
The MicroDYN & MicroFIN Approach
University Heidelberg
Issues in item development