Skill Mismatch and the Costs of Job Displacement*

Ljubica Nedelkoska, Frank Neffke, and Simon Wiederhold†

September 10, 2015

Abstract

An increasing number of studies evidence large and persistent earning losses by displaced workers. We study whether these losses can partly be attributed to the skill mismatch that arises when workers’ human capital is underutilized at the new job. We develop a new method of measuring skill mismatch that accounts for asymmetries in the transferability of human capital between occupations, and link these measures to exceptionally rich German administrative data on individuals’ work histories. We find that displacement increases the probability of occupational switching and skill mismatch, primarily because displaced workers often move to less skill-demanding occupations. Event-study analyses show that these downskilled switchers suffer substantially larger displacement costs than occupational stayers. Workers moving to more skill-demanding occupations have similar earning losses as stayers, and do not experience any displacement costs conditional on being employed.

Preliminary and incomplete. Please do not cite or circulate.

JEL Code: J24, J31, J63, J65

Keywords: job displacement, human capital, skill mismatch, occupational change

*We are grateful to David Autor, Uwe Cantner, David Dorn, Oliver Falck, Christina Gathmann, Ricardo Hausmann, Oliver Kirchkamp, Chris Robinson, Jens Ruhose, Johannes Schmieder, Guido Schwerdt, Till von Wachter, and Ludger Woessmann for their valuable comments and suggestions. We also thank seminar participants at the American Economic Association, the Centre for European Economic Research, the European Association of Labour Economists, the European Economic Association, the Halle Institute for Economic Research, Ifo Institute, the Society of Labor Economists, TASKS, and the Verein für Socialpolitik for providing helpful comments. Nedelkoska and Wiederhold gratefully acknowledge financial support from the European Union through the project “LLLIGHT’in’Europe: Lifelong Learning, Innovation, Growth and Human Capital Tracks in Europe” (Grant agreement no. 290683) and earlier PhD scholarship support from the German Research Foundation.

†Nedelkoska: Center for International Development at Harvard University and Zeppelin University, ljubica_nedelkoska@hks.harvard.edu; Neffke: Center for International Development at Harvard University, frank_neffke@hks.harvard.edu; Wiederhold: Ifo Institute Munich and CESifo; wiederhold@ifo.de
1 Introduction

An increasing number of studies evidence large and persistent earning losses by displaced workers. The majority of these studies agree that, 15 or more years after displacement, the earnings and wages of displaced workers are 10–15% below their expected levels (e.g., Jacobson, LaLonde and Sullivan, 1993; Eliason and Storrie, 2006; Couch and Placzek, 2010; Hijzen, Upward and Wright, 2010; Schmieder, von Wachter and Bender, 2010; Bonikowska and Morissette, 2012; Seim, 2012).\(^1\) One potential explanation for this robust empirical finding is that displacement forces workers into unfavorable changes of occupation. This suggests that we need to move beyond the recently proposed symmetric occupational distance measures towards characterizing occupational switches as having both a distance (short/long) and a direction (upward/downward). In this paper, we develop such measures and study whether poor matching of workers to new jobs is indeed an important channel through which the marked earning losses of displaced workers materialize.

Theoretically, there are at least four reasons why displaced workers experience difficult transitions: (i) the skills specific to the old job may not be useful in the new one (Becker, 1962; Neal, 1995; Parent, 2000; Poletaev and Robinson, 2008; Kambourov and Manovskii, 2009; Gathmann and Schönberg, 2010); (ii) incentive contracts that raised earnings beyond market wages are lost with a job separation (Lazear, 1979); (iii) there are search costs involved with finding a new job (Topel and Ward, 1992); and (iv) workers who were laid off may be stigmatized in the labor market because potential employers view displacement as a negative signal for worker performance (Vishwanath, 1989; Biewen and Steffes, 2010).\(^2\)

Several studies find support for the theory of specific human capital, which predicts that job switching causes wage penalties proportional to the loss of specific human capital (Podgursky and Swaim, 1987; Carrington, 1993; Jacobson, LaLonde and Sullivan, 1993; Neal, 1995; Parent, 2000; Burda and Mertens, 2001; Kambourov and Manovskii, 2009; Gathmann and Schönberg, 2010). This work finds that the relative earning losses of displaced workers are higher for industry switchers, occupational switchers, or workers who switch

\(^1\) Moreover, involuntary job loss is also associated with nonmonetary costs in terms of lower life expectancy and fertility rates (Frey and Stutzer, 2002; Sullivan and von Wachter, 2009; Del Bono, Weber and Winter-Ebmer, 2012). Job displacement even seems to burden future generations, as the job-loss of parents adversely affects children’s schooling achievements and their future careers (Oreopolous, Page and Stevens, 2008; Kalil and Wightman, 2011).

\(^2\) Stevens (1997) shows that serially correlated displacement spells explain much of the persistence and magnitude of lowered earnings after job displacement in the United States. Providing further empirical support for a stigma effect from large-scale field experiments, Kroft, Lange and Notowidigdo (2013) find that the likelihood of being asked to a job interview significantly decreases with the length of a worker’s unemployment spell and Eriksson and Rooth (2014) show that workers with contemporary unemployment spells of at least nine months are hired less often.
skill portfolios. None of these studies, however, documents whether the differential losses are persistent or temporary. Even more importantly, they reveal little about the nature of the occupational switch. It is not clear whether any larger losses of displaced switchers are driven by occupational mobility in general or by moving to “worse” jobs, that is, jobs that leave a worker’s human capital unused (as opposed to switches that require the worker to acquire new skills). This paper addresses these questions.

To motivate the analysis, we compare the earning losses of displaced occupational stayers and switchers, respectively, relative to their non-displaced peers in Germany in the period 1981–2006 (see Figure 1). The graph shows that switchers experience larger immediate earning losses after displacement than do stayers. The initial difference in displacement costs also persists in later periods. In the 15 years following displacement, stayers lose on average €1,700 per year relative to their non-displaced controls (equivalent to 6% of pre-displacement earnings), while switchers’ relative earnings losses are more than twice as high (€3,600 or 13% of pre-displacement earnings). The difference in displacement costs between stayers and switchers is most pronounced in the first nine years following displacement.

3 See Gibbons and Waldman (2004) for a theoretical discussion of the concept of task-specific human capital, that is, human capital that is not narrowly specific to occupations, but rather to basic tasks performed in these occupations.
The observed differences in the earning patterns of occupational stayers versus switchers cannot be explained by lost incentive contracts because both groups lose these contracts. Moreover, the stigmatization theory does not provide a good explanation for the observed differences in earning losses if such stigma equally affects displaced stayers and switchers. It could be that search costs are higher for occupational switchers than for stayers. However, a theory based on search costs would predict only a temporary adverse effect on the earnings and employment of occupational switchers after displacement. We argue, and provide evidence, that one important explanation of the persistent displacement cost differences between stayers and switchers is the theory of specific human capital.

Our paper puts forward a number of novel research questions. First, does displacement increase the likelihood of occupational change? If so, what kind of occupational change does displacement induce? In particular, switching from one occupation to another may involve
leaving skills unused, acquiring new skills, or both, depending on the direction of the switch. After establishing whether a relationship exists between displacement and the direction of occupational change, we ask whether earning losses are mitigated by workers who avoid certain types of switches. In particular, switching to occupations that require new skills may shield against large displacement costs. At the same time, switching to occupations that leave previously acquired skills unused may lead to particularly difficult transitions. Finally, we ask whether differences in displacement costs between occupational stayers and switchers are mainly due to differential productivity declines reflected in wages or to decreases in employment.

To answer these questions, we use German administrative data with longitudinal information on workers and their employers covering more than 30 years of labor market history. We use information on plant closures and mass-layoffs in Germany in the period 1981–2006 as indicators for exogenous job separations. We supplement the data on workers’ job histories with information about task and skill profiles of occupations using a large representative German employee survey. From this survey we construct measures of skill mismatch, which take into account both distance and direction of occupational moves. These measures allow us to characterize occupational moves by the amount of human capital that can be transferred from the old to the new occupation. Specifically, we distinguish among workers who, compared to their previous job, move to an occupation that predominantly requires new skills (upskilling), to an occupation that predominantly leaves existing skills unused (downskilling), to an occupation that requires few new skills and leaves few existing skills unused (lateral), and to an occupation that both requires new skills and leaves many existing skills unused (reskilling).

In general workers who switch occupations after displacement may differ in many dimensions from workers who remain in their pre-displacement occupation. We therefore use a combination of exact and propensity score matching to obtain an appropriate counterfactual of the evolution of annual earnings, wages, and days worked that displaced switchers would have experienced had they not been displaced and had they not switched occupations. For each displaced stayer and switcher, respectively, we take the set of non-displaced workers who worked in the same occupation and sector in the year prior to displacement and who have the same educational attainment and gender to be our potential control group. We also match on detailed pre-displacement work histories, that is, employment record and wages, which can be considered an almost sufficient statistic for the set of unobservable characteristics of workers (Card and Sullivan, 1988). In addition, we restrict our sample to workers with at least three years of tenure in their occupation at displacement, rendering unlikely that workers switch occupations as part of their career plan. Using this matched sample, we then
estimate the effect of skill mismatch on displacement costs using difference-in-differences estimation with individual fixed effects, which account for occupational selection based on earning or wage levels.

We find that displaced workers are 17 percentage points more likely to change their occupation than their non-displaced counterparts in the first year after displacement. The occupational mobility of displaced workers remains larger than that of their peers even 15 years after displacement. Furthermore, displacement also changes the type of switch that workers make. Conditional on occupational change, displacement induces moves to less skill-demanding occupations and decreases the probability of entering an occupation that requires developing new skills (upskilling or reskilling moves).

Our results also identify skill mismatch as an important mechanism for the substantial and persistent earning losses of displaced workers. While occupational switchers lose more than stayers in general (see Figure 1), we document a remarkable heterogeneity in displacement costs among switcher types. Switchers who are downskilled at the new job suffer the largest displacement costs, amounting to 14.9% of pre-displacement earnings per year in the 15 years after displacement. These earning losses are almost twice as large as those incurred by upskilled switchers. Moreover, the annual earnings of downskilled switchers show no sign of recovery over almost the entire period of observation. Upskilled switchers, on the other hand, recover quickly from the displacement-induced loss in earnings. Those among them who find new jobs even gain from switching and even quickly catch up to their non-displaced peers. The displacement costs of reskilled and lateral switchers are somewhat in between those incurred by upskilled and downskilled switchers, respectively.

We also find that the earning differences between switcher types are mainly driven by differential wage developments, which underscores the importance of skill mismatch (affecting worker productivity and thus wages) for displacement costs. The number of annual days worked is very similar across switcher types, suggesting that time spent for finding a new job does not differ between them.

By focusing on exogenous job separations, our paper also makes a more general contribution to better understand how different skills are valued at the job. Any analysis of the human-capital implications of occupational mobility has to address a number of selection problems. First, most job separations occur when workers are laid off. When potential employers believe that a worker has lost the previous job due to poor performance or incompetence, such job separations convey an adverse signal and may decrease the likelihood to find appropriate new employment. At the same time, previous research has shown that a worker’s skill set directly affects her job mobility. Second, occupational switching is often

4 For instance, Bergmann and Mertens (2011) find that, in accordance with the technological change
part of a worker’s career plan so workers may accumulate skills to be able to make the envisaged occupational moves. A typical example is a promotion to a managerial position after acquiring sufficient skills to perform managerial tasks. Finally, a voluntary occupational switch reflects an increase in the value of the new job relative to the old one; consequently, voluntary occupational switches are unlikely to involve human capital losses. These selection issues can be addressed by focusing on exogenous displacement events, namely, plant closures and mass-layoffs. These events are unrelated to individual worker performance and career plans, and thus come as close as empirically possible to experimentally dislocated labor.

The remainder of the paper is organized as follows. Section 2 embeds our paper in the previous literature. In Section 3 we construct measures of skill transferability between occupations and define types of occupational switches. In Section 4, we introduce the data and describe the sample restrictions and the matching procedure. Section 5 shows the results of our analysis of the effect of displacement on occupational mobility and on the probability of incurring skill mismatch. Section 6 outlines the event-study framework that we use to investigate the relationship between skill mismatch and displacement costs in terms of earnings, wages, and employment, and presents the respective results. Section 7 discusses the implications of our findings for policy and research.

2 Previous Literature on Occupational Mismatch

Our work is related to a small but quickly growing literature that develops measures of the “distance” between occupations depending on the similarity of the skills used (or tasks performed) by the workers in the occupations. The work of Shaw (1984, 1987) is perhaps the first attempt to define a measure of occupational distance which proxies the skill transferability across occupations. Here, the skill transferability between two occupations is assumed to be highly correlated with the probability of switching between these occupations. A similar approach is pursued by Neffke and Henning (2009), who regard excess labor flows between narrowly-defined industries as an indicator of the skill-relatedness of these industries.

Availability of detailed data that characterize occupations by their task or skill content—like the U.S. O*NET or the German Qualification and Career Survey (QCS)—recently enabled a more direct approach of measuring occupational distance. These newer measures incorporate the fact that different occupations report similar bundles of tasks or skills. The higher the overlap in the task or skill portfolio of two occupations, the more related the

5 See Acemoglu and Autor (2011) and Robinson (2011) for insightful discussions of the differences between skills and tasks.
occupations are considered to be. Among such measures are those proposed by Poletaev and Robinson (2008) and Gathmann and Schönberg (2010).\(^6\)

Gathmann and Schönberg (2010) use the QCS to place occupations in a 19-dimensional skill space. Each occupation can be thought of as a skill vector whose position is determined by the presence or absence of skills. Some occupations require the mastery of skills at higher levels than other occupations. To depict this fact, the length of the skill vectors can be interpreted as the level or intensity of skills. However, Gathmann and Schönberg (2010) normalize this length to unity, and only use the angle between the skill vectors to define distance (angular separation). The angle is a symmetric distance measure, which only contains information on the relative importance of a skill in an occupation. As a consequence, a switch, for instance, from a sales person to a professional negotiator assumes identical skill transferability as does a switch from a negotiator to a sales person. Nevertheless, although the relative importance of social-interaction skills for an ordinary sales person and for a professional negotiator may be similar, the absolute level required is likely to be far greater in the latter than in the former occupation because the negotiator’s job is substantially more complex.

Unlike Gathmann and Schönberg (2010), Poletaev and Robinson (2008) propose two distance measures that use information about the length of the skill vectors. Here, the length of each skill vector is proportional to the self-reported average occupational skill intensity, derived from the U.S. Dictionary of Occupational Titles (DOT), a predecessor of O*NET. An occupational switch where the new occupation employs the previous occupation’s “main skill” with much lower or much higher intensity is regarded as a distant switch.\(^7\) Therefore, although Poletaev and Robinson (2008) consider the skill intensity, they employ the Euclidean distance, or the distance between the tips of the occupations’ skill vectors, which, similar to the angular distance, produces a symmetric skill-transferability measure. We ar-

\[^{6}\] More recent examples of measures of occupational distance are Geel and Backes-Gellner (2011), Yamaguchi (2012), Firpo, Fortin and Lemieux (2013), Summerfield (2013), and Cortes and Gallipoli (2014). Based on cluster analysis of job tasks, Geel and Backes-Gellner (2011) group occupations in skill-related clusters. The resulting measure is discrete, as occupations can either belong or not belong to the same skill cluster. Yamaguchi (2012) estimates a structural model of occupational choice to explore the evolution of tasks over a career. Firpo, Fortin and Lemieux (2013) attempt to identify the occupational tasks that are most vulnerable to offshoring. Summerfield (2013) simultaneously considers education mismatch and skill mismatch of occupational switchers to investigate how returns to schooling change when accounting for human capital heterogeneity within a given level of education. Finally, Cortes and Gallipoli (2014) use a gravity-model-type approach to estimate costs of occupational mobility, which in their model depend on the similarity of tasks performed in these occupations. However, none of the measures proposed in these papers incorporates asymmetries in the transferability of skills when comparing a move between two occupations in one versus the other direction. See Section 3 for details.

\[^{7}\] The main occupational skill is the one with highest average intensity of use among the four derived general skills.
gue that by suggesting a symmetric relation in the skill transferability between occupations previous work on the similarity of occupations obscures the fact that there are strong asym-
metries in the transferability of skills when comparing a move from occupation i to j to a
move from occupation j to i.

Another stream of literature aims at measuring the qualification asymmetries between jobs or, more often, between workers and jobs. At the worker-job level, the measures of over-
and underqualification capture mismatch between a worker’s educational attainment and the
educational requirements of the job that the worker performs. Some of these measures are
based on self-reporting (Hartog and Oosterbeek, 1988; Alba-Ramirez, 1993; Galasi, 2008),
others are based on an analysis of job tasks (Eckaus, 1964; Hartog, 2000), and a third set
is based on realized job-person matches (Verdugo and Verdugo, 1989; Kiker, Santos and
de Oliveira, 1997; Quinn and Rubb, 2006). A major shortcoming of many of these measures
is that they typically focus on the levels of education or skills as opposed to skill content.
Thus, they ignore the possibility that occupational switchers are “overqualified” in some skills
required at the new job but are “underqualified” in others.

We develop measures of skill mismatch that combine the strengths of the symmetric
occupational distance measures and the educational mismatch measures. We use the German
QCS to derive the occupation-specific skill mix and use the average years of schooling and
vocational training of workers in an occupation to obtain a proxy for the complexity of the
skilled needed in this occupation. Combining both types of information, we measure skill
transferability in terms of skill redundancies and skill shortages involved in occupational
switches to reveal the asymmetry in skill transferability (for details, see Section 3).

Our work is most closely related to Robinson (2011), who also accounts for both the
distance and direction of an occupational switch. Using occupational task information from
the DOT matched with workers’ job histories from the Displaced Workers Survey (DWS) in
the United States, he finds that occupational switching is very frequent after job displace-
ment, and that displaced workers mostly switch downward in terms of skills requirements
immediately after displacement. While similar in spirit, our study differs in a number of
key points. First, our skill-mismatch measure has an intuitive interpretation: the number
of years of schooling and training (a) needed to develop the newly required skills, or (b)
that remain unused in the new occupation. Second, our estimation strategy more rigorously
addresses the selection issues associated with occupational switching. Third, we do not just
investigate the transition to the first post-displacement job, but follows workers for up to
15 years after displacement to assess the long-term effects of switching occupations after job
displacement.

See Leuven and Oosterbeek (2011) for a detailed overview.
3 Skill Mismatch

In this section, we describe a novel method to measure skill mismatch that accounts for asymmetries in the transferability of human capital between occupations. Using this measure, we attempt to contribute to the understanding of the consequences of human capital specificity for the patterns of occupational switching and for the development of individual earnings after displacement.

3.1 Measuring Skill Mismatch

We assume that each occupation has a specific skill profile. A skill profile expresses the level of mastery required to accomplish the tasks associated with a job in each of \(k \) skills. Accordingly, an occupation’s skill profile can be depicted as a \(k \)-dimensional skill vector. Figure 2 shows an example of two different occupations, \(O' \) and \(O \), which use \(k = 2 \) different skills. As can be seen from the positions of the skill vectors, \(L' \) and \(L \), both occupations require similar levels of skill \(M \), but occupation \(O' \) demands about twice as much of skill \(A \) as occupation \(O \). In other words, \(O \) not only involves a different skill mix than \(O' \), but also different skill levels. This difference in skill levels between jobs introduces asymmetries in the transferability of human capital between occupations.

Figure 2: Skill Profiles of Occupations \(O' \) and \(O \) in a Two-Dimensional Skill Space

The angle between the two vectors indicates whether occupations are similar in their skill compositions. For instance, Gathmann and Schönberg (2010) use the angular separation between skill vectors as a measure of occupational distance. However, some occupations
require that skills are mastered at higher levels than other occupations. Thus, the relative importance of a task (and its required skills) provides only limited information about the skill similarity of two occupations. In the example in Section 2 we compared ordinary salespersons with professional negotiators. Both use the same skill mix, but negotiators have to master each skill at a much higher level. This introduces an asymmetry in the relation between negotiators and salespeople. That is, whereas it is relatively easy for a negotiator to become a salesperson, the reverse switch is much harder. Indeed, some of the negotiator’s skills will be redundant when the negotiator works as a salesperson, whereas the salesperson will need to boost each of her skills to become an effective negotiator.

Each occupational switch can be characterized by two quantities: skill redundancy and skill shortage. Skill shortage consists of skills that are required in the new occupation but that were not needed in the old one. It is expressed in the number of years of schooling that it would typically take to master these new skills. Skill redundancy is analogously defined as the skills that are required in the old occupation, but remain unused in the new one. It is expressed as the number of years of schooling that remain unused when moving from one occupation to the other.

To measure skill redundancy and skill shortage, we use the 2005/2006 wave of the German QCS. This survey is conducted by the Federal Institute for Vocational Education and Training (BIBB), the Institute for Employment Research (IAB), and the Federal Institute for Occupational Safety and Health (BAuA). One of its purposes is to measure the task, skill, and knowledge requirements of occupations in Germany. The data cover individuals aged 16–65 who were employed in Germany at the time of the survey. The survey has been used extensively for labor-market research (for instance, by DiNardo and Pischke, 1997, Spitz-Oener, 2006, Dustmann, Ludsteck and Schönberg, 2009, Black and Spitz-Oener, 2010, and Gathmann and Schönberg, 2010) because of its rich information about work tasks and employees’ skills, education, and training. Due to limited comparability of survey questions over time, we consider only the 2005/2006 wave, which samples 20,000 individuals in 263 occupations. We transform the Likert-scaled answers on 46 survey questions on individual worker tasks, knowledge, and work conditions to binary variables that reflect whether or not a worker has a skill (or carries out a task). We then construct occupation-level skill-profiles by calculating the share of workers in an occupation with a particular skill or task.

This 46-dimensional skill profile contains a lot of redundant information. We therefore use factor analysis to reduce the dimensionality of the skill profiles, which results in a total

9 Intensities of job tasks are self-reported in the QCS. Close inspection of these data reveals that people seem to make erroneous judgments. This is due to the fact that most individuals are unaware of the true task distribution in the population; they mainly compare the tasks they perform with the tasks in jobs with which they are familiar.
of five broad factors whose eigenvalues exceed one and two significant factors that seem to capture the disutility of certain jobs like physical strain and work safety issues. Next, we rotate these factors such that most loadings are either close to one or zero, which allows us to characterize each occupation by its scores on the five skill factors, which can roughly be classified as (1) managerial/cognitive skills, (2) R&D/science skills, (3) technical skills, (4) sales/negotiation skills, and (5) medical skills. This classification deviates from the by-now-standard distinctions introduced by Autor, Levy and Murnane (2003) along the cognitive-manual and routine-non-routine dimensions. The reason for this is that Autor et al.’s classifications have the specific purpose of analyzing the effect of automation and computer-use on labor demand. In contrast, we are interested in the human capital distances among occupations and therefore prefer to remain agnostic about specific contents of skill profiles. Apart from the skill profile, we also calculate a disutility score for each occupation, which is based on 14 questions on the conditions under which workers perform their jobs; all of these questions load on one factor that quantifies a job’s disutility.

The QCS also provides a detailed account of each worker’s schooling history. The survey not only provides information on the highest educational attainment, but also on the time workers spent in up to seven episodes of postsecondary schooling and training. We use this information to calculate the average number of years of cumulative schooling of workers in a given occupation and assume that workers used this schooling to acquire the skills of their occupation’s skill profile. If schooling requirements for different skills are additive, total schooling requirements can be written as a linear combination of skill factors:

\[S_O = \alpha + \beta_1 s_{O}^1 + \beta_2 s_{O}^2 + \beta_3 s_{O}^3 + \beta_4 s_{O}^4 + \beta_5 s_{O}^5 + \varepsilon_O, \]

where \(S_O \) is the average number of years of schooling in occupation \(O \) and \(s_{O}^i \) is the factor score of the occupation for skill factor \(i \), which is measured in standard deviations. We also add the occupation’s disutility score as a control variable to avoid that some skills have negative estimates due to their correlation with poor working conditions. The resulting regression has a surprisingly good fit, with an R-squared of 0.74 and positive regression coefficients for all skill factors (see Table A.1 in the Appendix). The coefficients of this regression analysis can be interpreted as the number of years of schooling it takes to acquire a one standard deviation increase in the corresponding skill.

In the final step, we use the regression coefficients for each skill to derive the skill redundancy and skill shortage associated with occupational switches. For each skill, we calculate the difference in factor scores between two occupations, \(O \) and \(O' \), and multiply this by the corresponding coefficient of the schooling regression, yielding the following expressions for skill redundancy and skill shortage.

11
\[\text{shortage}_{OO'} = \sum_{i=1}^{5} \beta_i (f_{iO'} - f_{iO}) I(f_{iO'} > f_{iO}) \]

\[\text{redundancy}_{OO'} = \sum_{i=1}^{5} \beta_i (f_{iO} - f_{iO'}) I(f_{iO'} < f_{iO}), \]

where \(f_{iO} \) is occupation \(O \)'s factor score for skill \(i \), \(\beta_i \) is the coefficient on skill \(i \) in the schooling regression (1), and \(I(.) \) is an indicator function that equals 1 if its argument is true.

This procedure is illustrated in Figure 3. A job move from \(O' \) to \(O \) in this example yields a skill shortage of zero because employees in \(O' \) are at least as qualified as those in \(O \) in both skills. At the same time, the skill redundancy of such a move will equal \(\beta_A(f_A' - f_A) \). In contrast, a move from \(O \) to \(O' \) results in a skill shortage of \(\beta_A(f_A' - f_A) \), with zero redundancy.

Figure 3: Skill Shortage and Skill Redundancy

There are some obvious limitations to this decomposition of an occupation’s schooling requirements. For instance, schooling requirements for skills would not be additive if it is particularly easy (or hard) to learn certain combinations of skills. However, including all
possible interactions of skill factors increases the R-squared of the model to 0.78, a gain of just four percentage points at the cost of ten extra parameters. Another objection is that workers do not only acquire skills through schooling, but also through work experience. However, given the relatively good fit of the schooling regression, we believe that our method yields a good approximation to the skill redundancies and shortages in that arise in occupational switches.

3.2 Types of Occupational Switches

People are seldom only over- or underskilled when switching occupations; often they possess some skills that are not needed for the new job, and lack some that are. We therefore classify occupational skill mismatch in a two-by-two grid, using the population medians of skill shortage (0.7 school years) and skill redundancy (0.6 school years) as cutoff points to distinguish between four types of occupational moves (see Table 1). We call moves that involve high skill redundancies and low skill shortages “downskilling” moves. The opposite moves with low redundancies and high shortages are called “upskilling” moves. Workers who switch at high redundancies and high shortages have to change their skill sets completely. We call such switching “reskilling” moves. When both redundancies and shortages are low, moves are “lateral” and workers barely have to change their skill profiles.

On average, reskilled switchers upgrade their skills for the new job with an extra 1.6 years of education, and leave skills unused representing 1.5 years of education. Upskilling is associated with skill upgrading of 1.9 years on average and skill redundancy of 0.2 years. In contrast, downskilling is associated with 1.7 years of skill redundancy and only 0.2 years of skill upgrading. Finally, lateral switches entail 0.4 years of skill acquisition and 0.3 years of skill redundancy.

Table 1: Types of Occupational Switchers

<table>
<thead>
<tr>
<th>Redundancy</th>
<th>Shortage Above Median</th>
<th>Shortage Below Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Median</td>
<td>Reskilled</td>
<td>Downskilled</td>
</tr>
<tr>
<td>Below Median</td>
<td>Upskilled</td>
<td>Lateral</td>
</tr>
</tbody>
</table>

Table 2 shows the most common occupational moves by type of occupational switch. Switching from a job as an office clerk to a job as a social worker is the most common move among reskilled switchers. A salesperson becoming an office clerk (office clerk becoming a
salesperson) is the most frequent upskilling (downskilling) move. Among the lateral movers, a switch from typist to office clerk is the most commonly observed.

We merge these skill-mismatch measures with data on workers’ job histories in Germany (see Section 4) at the level of occupational pairs.

3.3 Skill Mismatch in the German Labor Market

To get a better sense of the skill-mismatch measures described above, it is instructive to look at some broader patterns in the German labor market that appear when using the measures. Figure 4 depicts the correlation over time between the nation-wide unemployment rate as an indicator of the business-cycle phase and the degree of skill mismatch, calculated as the sum of skill shortage and skill redundancy. By construction, skill shortage is always negative and skill redundancy is always positive, so a positive number means that shortage (in absolute terms) is smaller than redundancy. The idea here is that the quality of the match is the worse the more skills are left idle at the new job, that is, the higher redundancy is relative to shortage.

We observe that unfavorable labor market conditions tend to increase skill mismatch for involuntary occupational switchers, defined as switchers with an unemployment spell between two employment spells (left panel). One explanation for the positive correlation between unemployment rate and skill mismatch is that in bad times employers have better opportunities to choose whom to employ because there is excess supply of labor. One may expect that employers rather look for workers with a lot of skill redundancy because these workers are “overqualified” for the job to be performed. However, voluntary switchers, who move directly between jobs, do not switch with more redundancy when the labor-market conditions get worse, yet quite the opposite occurs (right panel). This indicates that persons who can optimally choose their next job require even more shortage—which can be seen as learning potential at the new job—to be willing to switch jobs in bad times. It is also apparent that voluntary switchers tend to avoid skill redundancy; irrespective of the business-cycle phase, they always switch with more shortage than redundancy on average.
Table 2: Most Common Occupational Moves by Type of Occupational Switch

<table>
<thead>
<tr>
<th>Reskilled</th>
<th>Upskilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office clerks</td>
<td>Social workers</td>
</tr>
<tr>
<td>Social workers</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Technical draughtspersons</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Salespersons</td>
<td>Office assistants</td>
</tr>
<tr>
<td>Cooks</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Nursery teachers, child nurses</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Office clerks</td>
<td>Home wardens</td>
</tr>
<tr>
<td>Restaurant and hotelkeepers</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Office clerks</td>
<td>Watchmen, custodians</td>
</tr>
<tr>
<td>Metal workers</td>
<td>Salespersons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Downskilled</th>
<th>Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office clerks</td>
<td>Salespersons</td>
</tr>
<tr>
<td>Office clerks</td>
<td>Typists</td>
</tr>
<tr>
<td>Buyers, wholesale and retail</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Buyers, wholesale and retail</td>
<td>Salespersons</td>
</tr>
<tr>
<td>Office clerks</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Gardeners, garden workers</td>
<td>Assistants, laborers</td>
</tr>
<tr>
<td>Salespersons</td>
<td>Household cleaners</td>
</tr>
<tr>
<td>Salespersons</td>
<td>Assistants, laborers</td>
</tr>
<tr>
<td>Entrepreneurs, managers</td>
<td>Office clerks</td>
</tr>
<tr>
<td>Salespersons</td>
<td>Cashiers</td>
</tr>
</tbody>
</table>

Figure 4: Skill Mismatch and the Business Cycle

Notes: The grey lines show the linear fit between the annual national unemployment rate in Germany and the sum of skill shortage and skill redundancy at the country level. Since skill shortage by construction takes only negative values and skill redundancy takes only positive values, a negative sum means that a switch entails more shortage than redundancy. In contrast, a positive sum indicates a switch with excess redundancy. Voluntary (involuntary) moves are switches between occupations without (with) an unemployment spell in between both employment spells. The sample includes all occupational moves between 1981 and 2010 of persons fulfilling the sample-selection criteria described in Section 4. Data sources: QCS 2005/2006, SIAB 1975–2010.

Moreover, the evolution of skill mismatch over a worker’s life-cycle also shows interesting patterns (see Figure 5). When employees switch occupations at young ages, they tend to move to jobs with excess skill shortage. Among those workers who switch occupations voluntarily (solid line), skill shortage dominates skill redundancy over the whole life-cycle. However, for involuntarily switchers (dashed line), redundancy starts dominating shortage after the age of 38. These patterns suggest that skill redundancy at the new job is not desirable, but skill shortage is.
Figure 5: Skill Mismatch over the Life-Cycle

Notes: The figure plots skill mismatch by age of voluntary or involuntary occupational switchers. Skill mismatch is defined as the sum of skill shortage and skill redundancy. Since skill shortage by construction takes only negative values and skill redundancy takes only positive values, a negative sum means that a switch entails more shortage than redundancy. In contrast, a positive sum indicates a switch with excess redundancy. Voluntary (involuntary) moves are switches between occupations without (with) an unemployment spell in between both employment spells. The sample includes all occupational moves between 1981 and 2010 of persons fulfilling the sample-selection criteria described in Section 4. Data sources: QCS 2005/2006, SIAB 1975–2010.

4 Data and Matching Strategy

4.1 Worker Labor-Market History

To track workers’ employment and unemployment histories, we draw on the Sample of Integrated Labor Market Biographies (SIAB), provided by the IAB. These data are a 2% random sample of all German social security records and are available for the years 1975 to 2010 (Dorner et al., 2010). Because employers are required by law to report the exact beginning and end of any employment relationship that is subject to social security contributions, the SIAB is the largest and most reliable source of employment information in Germany. Moreover, misreporting of earnings is punishable by law, which ensures high reliability of the earnings information.\(^\text{10}\) Just lacking information on civil servants and self-employed work-

\(^{10}\) Wages are right-censored, which affects about 7% of our sample. Similar to Dustmann, Ludsteck and Schönberg (2009) and Card, Heining and Kline (2013), we use the method proposed by Gartner (2005)
ers, these data cover about 80% of the total German workforce. Moreover, the SIAB also includes all spells of recipience of unemployment insurance benefits with daily precision.

4.2 Job Displacement and Sample-Selection Criteria

We define job displacement as the layoff of a tenured worker due to a plant closure or a mass-layoff. We do not consider all layoffs because workers may have been laid-off because of a relatively low productivity, making the layoff endogenous to the worker’s expected future performance. Indeed, such layoffs may act as signals for otherwise hard-to-observe performance characteristics (Gibbons and Katz, 1991, 1992; Fox, 1994). Using only plant closures to identify displaced workers has the advantage that employers do not select whose contracts are terminated. However, this comes at the cost of oversampling small plants, which typically have higher failure rates, but also tend to pay lower wages. To circumvent introducing a systematic bias in the firm-size distribution from which our sample of displaced workers is drawn, we therefore also consider workers displaced in the course of mass-layoffs (see also Schmieder, von Wachter and Bender, 2010). We use the definition by Hethey-Maier and Schmieder (2013) to identify exogenous displacement events.\footnote{That is, we restrict the sample of workers displaced due to a plant closure to include only those displacement events in which more than 80% of all workers were laid off in a given year, with the additional requirement that not more than 20% of the laid-off workers were reemployed at the same plant in the following year. Likewise, workers displaced in a mass-layoff come from firms whose employment declined from one year to the next by 30% or more excluding events where blocks of 20% or more workers moved to the same establishment in the subsequent year.}

Because many workers leave closing plants some time before the official closure (for instance, Gathmann and Schönberg, 2010; Davis and Von Wachter, 2011), we include “early leavers” in the sample of displaced, that is, workers who leave the plant one year before the displacement event.\footnote{Pfann (2006) and Schwerdt (2011) show that ignoring early leavers biases estimates of displacement costs, although both papers suggest different directions for this bias. Pfann (2006) finds that during the downsizing process prior to closure, the firm displaces workers with low firing costs, low expected future productivity growth, and low lay-off option values. He uses personnel records from a Dutch aircraft building company that went bankrupt in 1996 and shows that high-productivity workers are most likely to be retained. Schwerdt (2011), however, comes to the exact opposite conclusion. Using Austrian administrative data, he finds that early leavers are associated with significantly lower costs of job loss due to plant closure. He further proposes that separations up to two quarters before plant closure should be included in the sample of displaced workers.}

Furthermore, we impose a number of additional sample restrictions. (i) Pre-displacement establishments must have employed at least 10 workers two years prior to the closure, to avoid cases where single workers significantly contribute to the establishment’s closure. (ii) Workers must be between 18 and 55 years of age at the time of displacement. (iii) Workers must have at least six years of labor market experience prior to the displacement. Using only high-
tenured workers makes pre-displacement wages better proxies for worker productivity (Altonji and Pierret, 2001; Hanushek et al., 2015) and also allows us to observe pre-displacement wage and employment trends. (iv) Workers must not have switched occupations in the three years before displacement. On the one hand, this makes it more likely that our (occupation-based) measures adequately capture the true skills of a worker and that the reemployment decision is not driven by being mismatched in the old occupation (Phelan, 2011). On the other hand, imposing a minimum of three years of occupational tenure ensures a strong occupational attachment, which makes it less likely that these workers would have left their occupations voluntarily (we report some evidence for this in Section 5).13 (v) Workers must have a minimum of one year of tenure in the closing or downsizing plant (Fallick, 1993). (vi) Workers must have been displaced only once in the period 1981–2006 because any further displacement can be regarded as endogenous to the first one (e.g., Schmieder, von Wachter and Bender, 2010).14 (vii) Workers must not have left-censored labor market histories.15 (viii) Workers are not marginally employed because we can observe this class of workers only from 1999 onward.

There are often gaps in the SIAB employment histories, which occur, for example, due to the individual being in further education or retraining, in the military, or on parental leave. For these gap periods we assign zeros to the earnings and working days variables. We allow for gaps up to six years because these may coincide with periods spent obtaining a university education as part of a worker’s requalification after displacement, but drop people with gaps longer than six years.

4.3 Matching

Our final sample is comprised of 18,748 displaced workers. We observe these individuals each year, starting six years prior to displacement and for as many as 15 years after displacement. For each of these workers, we construct a counterfactual career that these workers would have followed had they not been displaced. We construct this counterfactual by matching workers to observationally similar workers in a sample of workers who have never been displaced and who meet all requirements imposed on our sample of displaced workers.

13 It is well established in the empirical labor-market literature that the probability of job change is generally declining with tenure. For instance, Topel and Ward (1992) find that for men, two-thirds of all job changes happen in the first 10 years after entering the labor market. Farber (1994) shows that the job hazard rate peaks after three months of employment, and declines afterward. Abraham and Farber (1987) estimate a Weibull hazard model for job change transitions, finding that the hazard declines sharply with tenure.

14 85% of all displaced workers are displaced only once in their work history.

15 Our dataset starts in 1975 for West Germany and in 1991 for East Germany. Large shares of workers who appear for the first time in 1975 (West Germany) or 1991 (East Germany) and are older than 21 have left-censored labor-market histories. We therefore exclude these workers from the sample.
workers.16

For this end we perform exact matching between displaced and non-displaced workers on gender, education (six categories), firm location (East or West Germany), sector (four categories), and detailed occupation (263 categories).17 By construction, displaced and non-displaced subjects are exactly aligned along these criteria. Since we are investigating the role of occupational switching in explaining displacement costs, it is especially important that workers in the control group work in the same occupation as displaced workers at the point of (virtual) displacement. Moreover, worker gender, educational degree, region, and sector are also highly relevant for labor-market outcomes, which underlines the importance to match on these variables.

However, it is well known that matching solely on observables can be inadequate if relevant variables are unobserved and therefore omitted (for a discussion, see Angrist and Pischke, 2008). We thus additionally employ propensity score matching on pre-displacement outcomes, namely, daily wages, and days worked. Assuming that wages capture productivity differences across workers and that working days reflect individual preferences for labor market activity, matching on pre-treatment outcomes controls for selection into occupational switching.18 To ensure that workers in the treatment and control groups follow the same trends before (virtual) displacement, we also match on the simple growth rate from $t - 6$ until $t - 3$ of both wages and days worked, with t being the year of (virtual) displacement. We also include age and occupational tenure into the calculations of the propensity score.

Finally, we add an interaction term between gender and occupational tenure to account for the possibility that employers value the same occupational experience differently for men and women. For each displaced worker, we select the closest control in terms of the estimated propensity score from those workers who also meet the exact-matching requirements, using one-to-one nearest neighbor matching (without replacement).19

16 Biewen et al. (2014) use a combination of exact and non-exact matching techniques to investigate the effectiveness of public sponsored training. Ichino et al. (2013) compare differences in the transitions of old and young workers who lost their jobs due to a plant closure. The authors select a control group out of the sample of non-displaced workers by matching exactly on a broad set of pre-displacement worker characteristics and job attributes. They perform non-exact matching on daily wages and firm size. Eliason and Storrie (2006) and Leombruni, Razzolini and Serti (2013) perform non-exact (nearest neighbor) matching to eliminate differences in observables between displaced and non-displaced workers.

17 We also match exactly on the year of (virtual) displacement. For non-displaced workers, the virtual displacement year is chosen at random provided that the sample restrictions are fulfilled.

18 Ashenfelter and Card (1985) account for pre-training earnings to correct for the fact that participants in training programs experience a decline in earnings prior to the training period. In the context of sorting induced by redistribution policies, Abramitzky (2009) argues that wages well capture individual characteristics that influence selection. McKenzie, Gibson and Stillman (2010) control for pre-migration wages to investigate earning gains from migration. They find that results from the difference-in-differences specification are reasonably close to the results obtained from using experimental data.

19 Kernel matching (see Biewen et al., 2014) yields qualitatively similar results.
Although we apply a highly demanding matching procedure, we obtain a close “statistical twin” in the sample of non-displaced subjects for 13,724 (73.2%) displaced subjects. Table 3 shows the matching variables and their distributions for displaced and non-displaced workers. After our matching procedure, the means of the pre-treatment variables look similar for the two groups of workers and are exactly the same for the variables on which we match exactly (not shown). This observation is confirmed by the results of a standard t-test for the equality of means. The only significant differences between displaced and non-displaced workers arise for days worked in $t - 6$, growth in days worked between $t - 6$ and $t - 3$, and age. However, although significant, the magnitudes of the differences are very small.

Table 3: Quality of Matching

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-displaced</td>
<td>Displaced</td>
</tr>
<tr>
<td>Daily wage in $t - 2$ (€)</td>
<td>80.51</td>
<td>80.93</td>
</tr>
<tr>
<td>Daily wage in $t - 3$ (€)</td>
<td>78.32</td>
<td>78.77</td>
</tr>
<tr>
<td>Daily wage in $t - 4$ (€)</td>
<td>76.42</td>
<td>77.02</td>
</tr>
<tr>
<td>Daily wage in $t - 5$ (€)</td>
<td>74.40</td>
<td>74.86</td>
</tr>
<tr>
<td>Daily wage in $t - 6$ (€)</td>
<td>72.80</td>
<td>73.26</td>
</tr>
<tr>
<td>Day worked in $t - 2$</td>
<td>362</td>
<td>362</td>
</tr>
<tr>
<td>Day worked in $t - 3$</td>
<td>358</td>
<td>358</td>
</tr>
<tr>
<td>Day worked in $t - 4$</td>
<td>357</td>
<td>356</td>
</tr>
<tr>
<td>Day worked in $t - 5$</td>
<td>356</td>
<td>355</td>
</tr>
<tr>
<td>Day worked in $t - 6$</td>
<td>358</td>
<td>356</td>
</tr>
<tr>
<td>Daily wage growth $t - 6$ to $t - 3$</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>Days worked growth $t - 6$ to $t - 3$</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Age</td>
<td>38.57</td>
<td>38.26</td>
</tr>
<tr>
<td>Occupational experience</td>
<td>9.16</td>
<td>9.11</td>
</tr>
</tbody>
</table>

Notes: t indicates the displacement year. Age and occupational experience are measured at displacement. Days worked include weekends, holidays, short sick leaves, and vacation days. For the ease of exposition, days worked are rounded to the next integer. Data source: SIAB 1975–2010.

4.4 Matched Sample

The final sample includes 13,724 displaced workers and an equal number of matched non-displaced workers whose employment, unemployment, and non-participation history we fol-
low for at most 15 years after (virtual) displacement. Within the sample of displaced workers, we distinguish between occupational switchers and occupational stayers. An occupational switch occurs if a worker moves between any of the 263 three-digit occupations.\(^{20}\)

Out of the sample of displaced workers, 9,823 (71.6%) stay in the same three-digit occupation in the first job after displacement, while 3,901 (28.4%) workers change occupations. Table 4 sets out descriptive statistics for the sample of all displaced workers, as well as occupational stayers and switchers, and their statistical twins among the non-displaced.\(^{21}\) Both stayers and switchers are mostly male and primarily work in West Germany. They also have similar working days. However, switchers have somewhat lower earnings than stayers prior to displacement. They are also younger, have less occupational tenure, and more often work in the primary or secondary sector than do stayers. However, the non-displaced controls are similar to the displaced in all variables, so any differences between displaced stayers and switchers will not affect our estimates of differential displacement costs.\(^{22}\)

Table 4: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Matched Sample</th>
<th>Stayers</th>
<th>Switchers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ND</td>
<td>D</td>
<td>ND</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>13,724</td>
<td>13,724</td>
<td>9,823</td>
</tr>
<tr>
<td>Mean annual earnings in (t - 2) (€)</td>
<td>29,372</td>
<td>29,471</td>
<td>29,779</td>
</tr>
<tr>
<td>Mean real daily wage in (t - 2) (€)</td>
<td>80.51</td>
<td>80.93</td>
<td>86.05</td>
</tr>
<tr>
<td>Mean days worked in (t - 2)</td>
<td>362</td>
<td>362</td>
<td>362</td>
</tr>
<tr>
<td>% Women</td>
<td>35.80</td>
<td>35.80</td>
<td>37.97</td>
</tr>
<tr>
<td>% East Germany</td>
<td>14.60</td>
<td>14.60</td>
<td>13.96</td>
</tr>
<tr>
<td>% Primary and secondary sector</td>
<td>49.01</td>
<td>49.01</td>
<td>45.38</td>
</tr>
<tr>
<td>Age</td>
<td>38.57</td>
<td>38.26</td>
<td>38.67</td>
</tr>
<tr>
<td>Occupational experience</td>
<td>9.16</td>
<td>9.11</td>
<td>9.45</td>
</tr>
</tbody>
</table>

Notes: ND denotes non-displaced workers and D denotes displaced workers. The stay/switch definition is based on displaced workers; that is, non-displaced “stayers” (“switchers”) are the matched controls to displaced stayers (switchers), but do not necessarily stay in the same occupation (switch occupations) after (virtual) displacement. Earnings, wages, days worked, and occupational experience are measured two years prior to displacement in \(t\). All other variables are measured at displacement. Days worked contain weekends, holidays, short sick leaves, and vacation days. For the ease of exposition, days worked are rounded to the next integer. Data source: SIAB 1975–2010.

\(^{20}\) To check whether our results are sensitive to the definition of occupational switcher, we used two other definitions. In the first (second) definition, we drop workers who leave the post-displacement occupation for a third occupation within one year (two years). Since our results are not sensitive to these definitional changes, we report only the results based on the broadest definition of occupational switching.

\(^{21}\) Note that the stay/switch definition is based on displaced workers; that is, non-displaced “stayers” (“switchers”) are the matched controls to displaced stayers (switchers), but do not necessarily stay in the same occupation (switch occupations) after virtual displacement.

\(^{22}\) The only significant difference between displaced and non-displaced workers emerges for age; this difference, however, appears small in magnitude.
In our sample of displaced occupational switchers, 521 (13%) workers are reskilled, 1,435 (37%) are upskilled, 1,470 (38%) are downskilled, and 475 (12%) are lateral switchers. Table 5 provides descriptive statistics for the four types of displaced occupational switches and their matched controls. We observe that the matching exercise evened out almost all differences between switcher types and their controls; only the differences in age and occupational experience are significant for upskilled switchers. Displaced workers appear to be somewhat younger and less experienced than their counterfactuals. However, to ensure that these differences are not affecting our results in a systematic fashion, we control for a quadratic polynomial in age in all regressions.

5 The Effect of Displacement on Occupational Moves

Unlike workers who change jobs voluntarily, choices of displaced workers will be more limited, especially if workers are displaced in regions with no job vacancies in the same or related occupations or if work in these occupations is becoming scarce because of a secular shift in technology. In line with this reasoning, Figure 6 shows that displacement substantially increases occupational mobility. In the first year after (virtual) displacement, 20.7% of the displaced workers are employed in an occupation other than their pre-displacement occupation, while only 3.2% of the non-displaced workers change occupations. (Note that due to our sample restrictions neither displaced nor non-displaced workers change occupations in the three periods before displacement.) Occupational mobility of displaced workers only slowly converges to that of non-displaced workers; in fact, the share of occupational switchers among displaced workers is significantly larger than the corresponding share for non-displaced workers up to 15 years after displacement. This substantial increase for displaced workers in the hazard of occupational change translates into a higher risk of incurring any type of skill mismatch.

23 Nedelkoska (2013) finds that German workers employed in occupations that are prone to technological substitution and outsourcing have a significantly higher hazard of occupational change.

24 Note that for this analysis we extend the samples of both non-displaced and displaced workers beyond those obtained after matching primarily because non-displaced workers in our sample hardly ever change their occupation, rendering the groups of upskilled, downskilled, reskilled, and lateral occupational switchers too small to allow for meaningful comparisons between displaced and non-displaced switchers. We thus use a 5% random sample of non-displaced workers. To remain consistent, we also use all 18,748 displaced workers, so displaced and non-displaced workers were subject to the same sample selection criteria (see Section 4.2).

25 Results are available on request.
Table 5: Descriptive Statistics by Type of Occupational Switch

<table>
<thead>
<tr>
<th></th>
<th>Reskilled Switchers</th>
<th>Upskilled Switchers</th>
<th>Downskilled Switchers</th>
<th>Lateral Switchers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ND</td>
<td>D</td>
<td>ND</td>
<td>D</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>521</td>
<td>521</td>
<td>1,435</td>
<td>1,435</td>
</tr>
<tr>
<td>Mean annual earnings in $t - 2$ (€)</td>
<td>29,642</td>
<td>29,723</td>
<td>27,252</td>
<td>27,772</td>
</tr>
<tr>
<td>Mean real daily wage in $t - 2$ (€)</td>
<td>81.67</td>
<td>81.66</td>
<td>74.82</td>
<td>76.55</td>
</tr>
<tr>
<td>Mean days worked in $t - 2$</td>
<td>362</td>
<td>362</td>
<td>362</td>
<td>361</td>
</tr>
<tr>
<td>% Women</td>
<td>18.81</td>
<td>18.81</td>
<td>14.56</td>
<td>14.56</td>
</tr>
<tr>
<td>% East Germany</td>
<td>24.18</td>
<td>24.18</td>
<td>31.71</td>
<td>31.71</td>
</tr>
<tr>
<td>% Primary and secondary sector</td>
<td>60.65</td>
<td>60.65</td>
<td>55.68</td>
<td>55.68</td>
</tr>
<tr>
<td>Age</td>
<td>38.02</td>
<td>37.61</td>
<td>38.50</td>
<td>37.20</td>
</tr>
<tr>
<td>Occupational experience</td>
<td>8.32</td>
<td>8.20</td>
<td>8.66</td>
<td>8.32</td>
</tr>
<tr>
<td>Skill shortage (in years of schooling)</td>
<td>-1.63</td>
<td>1.91</td>
<td>0.23</td>
<td>0.38</td>
</tr>
<tr>
<td>Skill redundancy (in years of schooling)</td>
<td>1.48</td>
<td>0.21</td>
<td>1.65</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Notes: ND denotes non-displaced workers and D denotes displaced workers. The type of occupational switch is based on displaced workers, while non-displaced workers are the matched controls to displaced workers in the respective category. Earnings, wages, days worked, and occupational experience are measured two years prior to displacement in t. All other variables are measured at displacement. By construction, skill shortage (redundancy) takes only negative (positive) values. Days worked contain weekends, holidays, short sick leaves, and vacation days. For the ease of exposition, days worked are rounded to the next integer. Data sources: QCS 2005/2006, SIAB 1975–2010.
Figure 6: Job Displacement Induces Occupational Moves

Notes: The figure plots the share of workers who change occupations (263 categories) in a given year. The sample includes all workers displaced in the period 1981–2006 in Germany who meet the selection criteria explained in Section 4.2 (18,748 workers in $t = 0$) and a 5% random sample of non-displaced workers who meet the same criteria (80,462 workers in $t = 0$). (Virtual) displacement takes place between year $t = -1$ and $t = 0$. Data source: SIAB 1975–2010.

Core to this study is the notion that occupational change has a direction in terms of whether workers face skill redundancies or shortages at the new job. In the short run, occupational changes that do not require the acquisition of additional skills (lateral and downskilled) are less costly than those that do (reskilled and upskilled). However, the latter types of occupational switches will probably yield long-term payoffs. Therefore, the decision to invest in up- or reskilling is likely to depend on workers’ remaining years of working life. The average age of displaced workers in our sample is 38.3 years, which means that a typical worker will stay in the labor market for about 25 more years. However, compared to non-displaced workers (who do not have to leave their current employer), displaced workers have substantially less negotiation power when searching for new jobs. Employers will in general avoid workers who lack all required skills, but have no reason to reward redundant skills. Therefore, displacement may increase the probability of switching to occupations for which a worker has all necessary skills, that is, it may increase downskilling and lateral moves.

Table 6 shows the results from a multinomial logistic regression that models occupational choice as a function of displacement. Workers choose between staying in the same occupation (which is our baseline group) and the four types of occupational switches defined in Section 3.
The regression controls for all the matching variables described in Section 4.3. Coefficients are reported as relative risk ratios. The results show that, compared to non-displaced workers, displaced workers are 8.6 times more likely to switch to an occupation with very similar skill requirements (lateral switches) and 8.2 times more likely to switch to an occupation that leaves a substantial part of the previously acquired skills idle (downskilled switches). On the other hand, switches that require workers to learn new skills, but keep most of the previously acquired skills in use (upskilled switches) and switches that require obtaining a completely different skill set (reskilled switches) are only about 7.5 times more likely among displaced vis-à-vis non-displaced workers. These differences in coefficients already suggest that displacement alters the direction of occupational switching.

Table 6: The Effect of Job Displacement on Skill Mismatch, Full Sample

<table>
<thead>
<tr>
<th>Independent variable → Displacement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reskilled</td>
<td>7.472***</td>
</tr>
<tr>
<td></td>
<td>(34.36)</td>
</tr>
<tr>
<td>Upskilled</td>
<td>7.465***</td>
</tr>
<tr>
<td></td>
<td>(50.89)</td>
</tr>
<tr>
<td>Downskilled</td>
<td>8.213***</td>
</tr>
<tr>
<td></td>
<td>(53.21)</td>
</tr>
<tr>
<td>Lateral</td>
<td>8.649***</td>
</tr>
<tr>
<td></td>
<td>(30.96)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>89,962</td>
</tr>
<tr>
<td>χ^2(df=212)</td>
<td>11183.71</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Notes: The sample includes all workers displaced in the period 1981–2006 in Germany who meet the selection criteria explained in Section 4.2 and a 5% random sample of non-displaced workers who meet the same criteria. All matching variables are used as controls (see Section 4.3). Occupational stayers are the base category. The reported coefficients are relative risk ratios (RRR). z statistics are reported in parentheses. Data sources: QCS 2005/2006, SIAB 1975–2010. *** p<0.01, ** p<0.05, * p<0.1.

The results in Table 7, where we condition on occupational switching, support this conclusion. We observe that displaced workers clearly exhibit different switching patterns than do non-displaced workers. Relative to workers who downskill, displacement decreases the probability of upskilling and reskilling, respectively. At the same time, the relative probability of lateral moves is very similar for displaced and non-displaced workers. These findings are in line with the hypothesis put forward above that displaced workers lack negotiation power and must accept that their previously acquired skills are left unused rather than employers having to accept skill deficits.
6 Displacement Cost by Type of Occupational Switcher

6.1 Estimation Strategy: Event-Study Framework

In the previous section, we established differential occupational switching patterns of displaced vis-à-vis non-displaced workers. We now analyze whether these differences can explain why displaced workers experience such difficult transitions by investigating displacement costs by switcher type. To gauge the role of occupational switching in explaining displacement costs, we employ a difference-in-differences approach, in combination with matching on pre-displacement outcomes and controlling for unobserved selection into occupations based on time-invariant characteristics. Our identification strategy rests on the assumption that, conditional on pre-displacement outcomes, worker fixed effects, and further observable worker characteristics, non-displaced workers provide appropriate counterfactuals for their displaced peers.

We estimate variants of the following regression:

Table 7: The Effect of Job Displacement on Skill Mismatch, Occupational Switchers

<table>
<thead>
<tr>
<th>Independent variable →</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reskilled</td>
<td>0.845***</td>
</tr>
<tr>
<td></td>
<td>(-2.69)</td>
</tr>
<tr>
<td>Upskilled</td>
<td>0.923*</td>
</tr>
<tr>
<td></td>
<td>(-1.66)</td>
</tr>
<tr>
<td>Lateral</td>
<td>1.113</td>
</tr>
<tr>
<td></td>
<td>(1.49)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>9,631</td>
</tr>
<tr>
<td>χ^2 (df=156)</td>
<td>1513.10</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Notes: The tables shows regressions analogous to those in Table 6 for the sample of occupational switchers. All matching variables are used as control variables (see Section 4.3). Downskilled switchers are the base category. The reported coefficients are relative risk ratios (RRR). z statistics are reported in parentheses. Data sources: QCS 2005/2006, SIAB 1975–2010. *** p < 0.01, ** p < 0.05, * p < 0.1.
\[Y_{it} = \alpha_i + \gamma_t + X'_{it}\delta + \sum_{k \geq -4}^{15} \beta_1^k T^k_{it} + \sum_{k \geq -4}^{15} \beta_2^k T^k_{it} D_i + \sum_{k \geq -4}^{15} \beta_3^k T^k_{it} Switcher_i + \sum_{k \geq -4}^{15} \beta_4^k T^k_{it} D_i Switcher_i + \varepsilon_{it}, \]

where \(Y_{it} \) is the outcome of interest (annual earnings, daily wage, or days worked) of individual \(i \) in year \(t \). The inclusion of worker fixed effects, denoted by \(\alpha_i \), controls for any time-invariant differences between displaced and non-displaced workers that remain after applying our matching procedure. Accounting for worker fixed effects also allows the selection into occupational switching to be based on earning or wage levels and controls for the possibility that low wage workers may be more likely to leave the labor force in the non-displaced group, which would create a mechanical increase in wages of non-displaced workers relative to displaced workers.\(^{26}\) \(\gamma_t \) are calendar time effects, which account for economy-wide changes in the outcome over time, for instance, business cycle effects. The vector \(X_{it} \) consists of observed, time-varying characteristics of the worker, namely, age and age squared.

The dummy variables \(T^k_{it} \) take the value 1 if worker \(i \) is observed in year \(t \) at a distance of \(k \) years from (virtual) plant closure or mass-layoff, with \(k = 0 \) denoting the year of (virtual) displacement. \(D_i \) is a dummy variable taking the value 1 if \(i \) is displaced in a plant closure or a mass-layoff in the period 1981–2006. \(Switcher_i \) takes the value 1 if (a) \(i \) is displaced and observed in an occupation different from the pre-displacement occupation when she re-appears in the labor market; or (b) \(i \) is a matched control to a displaced switcher. These matched controls do not necessarily switch occupations, but are otherwise statistically identical to the displaced switchers and thus provide a counterfactual outcome path for displaced switchers. Depending on the specification, the dummy variable \(Switcher_i \) can also refer to upskilling, downskilling, lateral, or reskilling switchers and to their matched controls, respectively. \(\varepsilon_{it} \) is an error term for unexplained person-year variation in the dependent variable.

Taken together, the \(\beta \)-coefficients in Equation (2) separately describe the time path of the outcome of displaced and non-displaced workers from four periods prior to displacement to 15 periods after displacement for occupational stayers and switchers separately. The difference

\(^{26}\) The fixed effects are identified by the variation in the outcome in years 5 and 6 before displacement.
in the outcome between displaced and non-displaced workers in the group of stayers is:
\[E(Y_{it} \mid \text{Switcher}_i = 0, D_i = 1, T_{it}^k = 1) - E(Y_{it} \mid \text{Switcher}_i = 0, D_i = 0, T_{it}^k = 1) = \beta^k_2. \]

For switchers, the within-group difference reads:
\[E(Y_{it} \mid \text{Switcher}_i = 1, D_i = 1, T_{it}^k = 1) - E(Y_{it} \mid \text{Switcher}_i = 1, D_i = 0, T_{it}^k = 1) = \beta^k_2 + \beta^k_4. \]

The time path of the difference between both within-group differences, that is, the difference-in-differences estimate, is given by \(\beta^k_4 \). This estimate measures any additional effect of being an occupational switcher (or any type thereof) beyond the common effect of job displacement.

6.2 Results

Figure 7 shows the results of estimating Equation (2) for each of the four groups of occupational switchers (that is, downskilled, upskilled, lateral and reskilled), with annual earnings as the outcome variable. The left-hand side figures compare the effect of being displaced for occupational stayers with the combined effect of being displaced and mismatched. The right-hand side figures plot the empirical counterpart of the difference-in-differences estimate, \(\beta^k_4 \), in Equation (2).

The first observation is that the pre-displacement trends are flat for stayers and all types of switchers. Apparently, the matching exercise achieves a very good balance in earning trends even within the different switcher groups. If switching behavior had been driven by (unobserved) productivity differences beyond what our estimation strategy controls for, we would not have expected these trends to be flat. Second, we find that stayers and switchers suffer displacement costs in almost every period. Put differently, neither staying in the pre-displacement occupation nor switching occupations can shield displaced workers against experiencing earning losses. However, the post-displacement earning development of switchers relative to that of stayers differs remarkably by switcher type, which is indicated by the difference-in-differences graphs. We focus on these relative outcomes of switchers in the remainder of this section.

27 Figure 1 in the introduction is the corresponding graph for all switchers.

28 An exception is the last pre-displacement year, in which we already find a modest drop in annual earnings of displaced workers (for a similar result, see Jacobson, LaLonde and Sullivan, 1993, Schmieder, von Wachter and Bender, 2010, and Davis and Von Wachter, 2011). Commonly, this is interpreted as an early sign of distress of the plants that are closing down or dismissing large shares of their labor force.

29 One may argue that annual earnings overestimate the true displacement costs, given the generous German welfare system. However, our results are similar when we use workers’ disposable income, that is, earnings plus unemployment insurance benefit, as the outcome variable. This is in line with Schmieder, von Wachter and Bender (2010), who find that using annual earnings or annual income leads to comparable estimates of displacement costs.
Downskilled occupational switchers experience the largest earning losses. Compared to stayers and relative to the control group, the earnings of downskilled switchers drop sharply by roughly €4,500 one year after displacement.30 Earnings of displaced workers recover very slowly, and only nine years after displacement the earning losses relative to stayers become insignificant. In the 15 years after displacement, the additional average earning losses of downskilled switchers amount to €1,700 per year. Total losses of downskilled switchers (that is, losses towards the non-displaced peers) are €4,100, which is equivalent to 14.9% of pre-displacement earnings.31

In contrast, the adverse earning effects for reskilled, lateral, and especially upskilled switchers after displacement are more temporary in nature. Specifically, upskilled switchers close the earning gap to stayers very quickly; however, they never overtake them. While upskilled switchers incur immediate earning losses upon displacement of about €2,100 relative to stayers, their earnings recover almost immediately and show a clear upward trend. On average, upskilled switchers lose a modest €184 per year more than stayers over 15 post-displacement years. Total earning losses of upskilled switchers (€2,300, or 8.5% of pre-displacement earnings) are only half as large as as those incurred by downskilled switchers, highlighting the asymmetry of occupation switches. However, if upskilled switchers incurred costs in terms of education taken to acquire new skills, the net benefits of such moves are uncertain.32

The earnings of reskilled and lateral switchers also recover quickly after displacement, although the positive earning development for these groups is not as pronounced as it is for the upskilled switchers. Moreover, because of the small sample size for these switcher groups, estimates are rather imprecise. In most periods we therefore cannot reject that either of these two switcher types experience the same evolution of their earnings as stayers do.

30 These immediate losses are calculated as the difference-in-differences estimate (that is, β^t_k) in period $t + 1$ net of the corresponding estimate in $t - 2$, where insignificant difference-in-differences estimates are set to zero. We chose $t - 2$ as period for comparison because it is unlikely that future displacement affects outcomes two years before actual displacement.

31 The average losses as a share of pre-displacement earnings are calculated by taking the mean of the estimated within-cohort difference (that is, $\beta^t_k + \beta^t_2$) in periods $t = 0$ to $t = 15$ and then subtracting the mean of these estimates prior to displacement, that is, in periods $t = -4$ to $t - 2$, setting insignificant estimates once again to zero.

32 In fact, we observe clear evidence for educational upgrading on the side of upskilled switchers. One year before displacement, the share of upskilled switchers with college education is 6%, increasing to 9% three years after displacement. For comparison, the share of college-educated individuals in the group of downskilled switchers increases only modestly from 12% in $t - 1$ to 13.5% in $t + 3$. This investment in additional education is induced by the displacement event; the educational attainment of non-displaced workers remains virtually unchanged between $t - 1$ and $t + 3$.
Figure 7: Effects of Skill Mismatch on Annual Earnings

(a) Stayers vs. Downskilled Switchers

(b) Stayers vs. Upskilled Switchers

(c) Stayers vs. Lateral Switchers

(d) Stayers vs. Reskilled Switchers

Notes: The figure plots coefficients from estimating Equation (2) with annual earnings (in real €2005) as the dependent variable. Sample includes all workers displaced in the period 1981–2006 in Germany who meet the sample-selection criteria in Section 4.3 and their non-displaced controls. In each left-hand side panel, the straight line represents displaced stayers; the dashed line represents one of four types of displaced switchers: downskilled, upskilled, lateral, reskilled (see Section 3). Stayers still work in their pre-displacement occupation in their first post-displacement job; Switchers move to another occupation. Earnings are always expressed relative to earnings of a corresponding control group of non-displaced workers. Each control group was chosen by finding workers with the same gender and educational attainment as the displaced workers who were employed in the same occupation and sector with similar occupational tenure in the year prior to displacement. Workers in the control group also have similar wages and working days 2–6 years prior to displacement as the displaced workers (for details, see Section 4). The displacement event that happens between year $t = -1$ and $t = 0$. Controls include calendar time and individual fixed effects, as well as age and age squared. The 90% confidence intervals are derived from standard errors clustered by individual. Data sources: QCS 2005/2006, SIAB 1975–2010.
The displacement costs shown in Figure 7 occur from a combination of unemployment periods and reduced wages at the new job. If the differences in the displacement effect in terms of earning losses is due to differences in skill mismatch associated with each switching type, these differences should materialize through drops in daily wages, not lower re-employment rates. For instance, downskilled switchers should experience drops in pay rates, while upskilled switchers should gain in wage. Moreover, lateral switchers should have experiences similar to those of displaced occupational stayers, neither suffering a large drop nor enjoying a significant raise in pay rate. Because reskilled switchers, who move over large skill distances, lose and gain substantial amounts of skills at the same time, their wage development is harder to foresee.

Given that information on the exact number of hours worked is not available in the SIAB data, we use daily instead of hourly wage rates for this analysis. Figure 8 shows difference-in-differences plots with daily wages as the dependent variable. These graphs support the hypothesis that skill mismatch is an important driver of displacement costs. Downskilled workers lose an average of €3 per day more than stayers. There is no apparent tendency for recovery; only towards the end of the observation period do relative wage losses become (marginally) insignificant (total losses: €6.5 per day, or 8.3% of pre-displacement wages). The wage path of upskilled workers is markedly different. They do not experience any wage decline relative to stayers after displacement. Instead, upskilled switchers quickly overtake stayers and the gap between both widens over time. On average, upskilled workers gain €3.4 on stayers; in fact, they do not face any displacement costs at all (total losses are €0.25 per day).

As was the case for the annual earnings development, the wage development for lateral and reskilled switchers is somewhat in between those of downskilled and upskilled switchers. The relative (total) wage losses amount to a modest €0.5 (€3.8) for lateral switchers and are virtually non-existing (€2) for reskilled switchers.

33 In the daily-wage regressions, we restrict the sample to workers being full-time employed on June 30th of each year. Thus, these estimates can be interpreted as “intensive margin” effects. We use only full-time employees because daily wage is not a meaningful measure of productivity for part-time employees.
Figure 8: Effects of Skill Mismatch on Daily Wages

(a) Stayers vs. Downskilled Switchers

(b) Stayers vs. Upskilled Switchers

(c) Stayers vs. Lateral Switchers

(d) Stayers vs. Reskilled Switchers

Notes: The figure plots coefficients from regressions analogous to those underlying Figure 7 with daily wages (in real €2005) as the dependent variable and conditional on being full-time employed on June 30th in a given year. The displacement event that happens between year $t = -1$ and $t = 0$. The confidence intervals are defined at the 90% level and are derived from standard errors clustered by individual. Data sources: QCS 2005/2006, SIAB 1975–2010.
Figure 9 shows that the initial post-displacement losses and subsequent recovery in annual earnings are primarily due to changes in the number of days worked. Moreover, employment rates of displaced workers are already reduced in the year before displacement, which explains the decline in annual earnings prior to the displacement year. However, it is important to note that the evolution in days worked is very similar for all four types of displaced switchers. Each type of occupational switcher initially experiences a severe detachment from the labor market in the first two to three years after displacement. However, employment recovers quickly in all groups, and trends look similar across groups. On average, downskilled switchers decrease their number of working days following displacement by 10 days more than stayers, and by 21 days in total (a decline of 5.8% compared to their pre-displacement days worked). Upskilled switchers experience reductions in employment of 5 days on stayers and of 22 days on their non-displaced peers (equivalent to 6% of pre-displacement days worked). Lateral (reskilled) switchers work 5 (12) days less than stayers after displacement and 19 (27) days less than their non-displaced counterparts. Although modest, these differences in post-displacement labor-force attachment across switcher types make intuitively sense; for instance, workers who switch their skill portfolio completely (reskilled) have to invest more in training before entering a new occupation than laterals, who switch very close to their initial skill portfolio.
Figure 9: Effects of Skill Mismatch on Days Worked

(a) Stayers vs. Downskilled Switchers

(b) Stayers vs. Upskilled Switchers

(c) Stayers vs. Lateral Switchers

(d) Stayers vs. Reskilled Switchers

Notes: The figure plots coefficients from regressions analogous to those underlying Figure 7 with days worked as the dependent variable. The displacement event that happens between year $t = -1$ and $t = 0$. The confidence intervals are defined at the 90% level and are derived from standard errors clustered by individual. Data sources: QCS 2005/2006, SIAB 1975–2010.
A large part of the losses that displaced workers experience are due to lower employment after displacement; irrespective of the switcher type, at least 40% of the total earning losses are due to unemployment periods or a decrease in working days after displacement. However, we observe that the relative contribution of decreases in labor supply (as compared to decreases in pay rate) to the displacement costs differs substantially between switcher types. In the case of downskilled switchers, 41.1% of the annual earning losses result from weaker labor-market attachment. In the case of upskilled switchers, however, almost the entire losses (96%) are due to fewer working days. Reskilled switchers (74.7%) and lateral switchers (50.7%) are somewhat in between. This strongly suggests that the loss of specific human capital is an important mechanism behind the large and persistent earning losses of displaced workers.

7 Conclusions

This paper investigates the role of skill mismatch in explaining the size and persistence of earning losses of workers displaced due to a plant closure or mass-layoff in Germany between 1981 and 2006. For this end we introduce novel measures of skill mismatch between occupations that allow us to distinguish occupational switches by the amount of previously acquired skills that the worker can or cannot use in the new occupation. In contrast to previous measures of occupational distance, our measures of skill mismatch account for the asymmetry in occupational moves that is implied by differences between occupations in the complexity of the tasks to be performed.

We find that experiencing a plant closure or mass layoff substantially increases a worker’s probability to switch occupations. Most individuals who switch occupations after displacement are either over- or underskilled at the post-displacement job. A smaller share of occupational switchers moves to jobs that require a completely different skill set (reskilled switchers) and another small share stays in highly related occupations (lateral switchers). Comparing occupational switching patterns between displaced and non-displaced workers, we find that job displacements significantly increase the probability of entering an occupation with lower skill requirements, and decrease the probability to switch over long skill distances.

Downskilled switchers fare worse in terms of post-displacement earnings than all other types of switchers, losing on average 14.9% of their pre-displacement earnings per year relative to their counterfactual. They also experience significantly larger displacement costs than stayers for up to nine years after displacement. Workers moving to more skill-demanding occupations lose only a modest 0.7% of pre-displacement earnings more than stayers. When we consider daily wages as a more direct measure of a worker’s productive human capital
and condition on finding employment, differences in the transitions between upskilled and
downskilled switchers become even more pronounced. While there is again no tendency to-
ward recovery for downskilled workers, upskilled workers earn significantly more than stayers
from the second year after displacement onwards.

Our results suggest that skill mismatch is an important mechanism behind the observed
pattern of large and irreversible earning losses of displaced workers. This implies that an
active policy involvement can play an important role in helping displaced workers in reducing
the earning losses caused by job displacements. In addition to providing timely and accurate
information on job vacancies, programs to assist displaced workers in finding new jobs should
consider both aspects of job matching, namely, workers’ previously acquired skills and the
skill requirements of the available jobs. These programs should locate matches that allow a
great amount of human capital to be transferred to the new job, since working in jobs that
leave large part of the previously acquired skills unused lead to substantial earning losses.
When there are no vacancies that would allow for a large degree of transferability of acquired
skills, workers should be encouraged to take jobs with a high learning potential, even if this
necessitates investment in further education and training.
References

38

A Appendix

Table A.1: Schooling Regression

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Years of schooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor1 (cognitive)</td>
<td>1.488***</td>
</tr>
<tr>
<td></td>
<td>(0.0946)</td>
</tr>
<tr>
<td>Factor2 (science)</td>
<td>1.159***</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
</tr>
<tr>
<td>Factor3 (technical)</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
</tr>
<tr>
<td>Factor4 (sales)</td>
<td>0.0911</td>
</tr>
<tr>
<td></td>
<td>(0.0959)</td>
</tr>
<tr>
<td>Factor5 (medical care)</td>
<td>0.325***</td>
</tr>
<tr>
<td></td>
<td>(0.0900)</td>
</tr>
<tr>
<td>Factor6 (work disutility)</td>
<td>-0.556***</td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
</tr>
<tr>
<td>Constant</td>
<td>12.42***</td>
</tr>
<tr>
<td></td>
<td>(0.0830)</td>
</tr>
<tr>
<td>Observations (occupations)</td>
<td>263</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.734</td>
</tr>
</tbody>
</table>

*Notes: Skills are measured in standard deviations. Standard errors in parentheses. Data source: QCS 2005/2006*** p<0.01, ** p<0.05, * p<0.1.*